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Semi-Infinitely Constrained Markov Decision
Processes and Provably Efficient

Reinforcement Learning
Liangyu Zhang , Yang Peng , Wenhao Yang , and Zhihua Zhang

Abstract—We propose a novel generalization of constrained
Markov decision processes (CMDPs) that we call the semi-infinitely
constrained Markov decision process (SICMDP). Particularly, we
consider a continuum of constraints instead of a finite number of
constraints as in the case of ordinary CMDPs. We also devise two
reinforcement learning algorithms for SICMDPs that we refer to as
SI-CMBRL and SI-CPO. SI-CMBRL is a model-based reinforce-
ment learning algorithm. Given an estimate of the transition model,
we first transform the reinforcement learning problem into a linear
semi-infinitely programming (LSIP) problem and then use the dual
exchange method in the LSIP literature to solve it. SI-CPO is a pol-
icy optimization algorithm. Borrowing ideas from the cooperative
stochastic approximation approach, we make alternative updates
to the policy parameters to maximize the reward or minimize
the cost. To the best of our knowledge, we are the first to apply
tools from semi-infinitely programming (SIP) to solve constrained
reinforcement learning problems. We present theoretical analysis
for SI-CMBRL and SI-CPO, identifying their iteration complexity
and sample complexity. We also conduct extensive numerical ex-
periments to illustrate the SICMDP model and demonstrate that
our proposed algorithms are able to solve complex control tasks
leveraging modern deep reinforcement learning techniques.

Index Terms—Constrained Markov decision process, policy
gradients, reinforcement learning, semi-infinitely programming.

I. INTRODUCTION

R EINFORCEMENT learning has achieved great success
in areas such as game-playing [51], [60], robotics [30],

[37], large language models [42], [43], etc. However, due to
safety concerns or physical limitations, in some real-world
reinforcement learning problems, we must consider additional
constraints that may influence the optimal policy and the learning
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process [21], [68]. A standard framework to handle such cases is
the constrained Markov Decision Process (CMDP) [6]. Within
the CMDP framework, the agent has to maximize the expected
cumulative reward while obeying a finite number of constraints,
which are usually in the form of expected cumulative cost
criteria.

However, we are sometimes concerned with problems with
a continuum of constraints. For example, the constraints we
meet might be time-evolving or subject to uncertain parameters,
which cannot be formulated as an ordinary CMDP (see Exam-
ples 1 and 2 in Section III). In this paper we study a generalized
CMDP to address the above problem. Because the constraints
are not only infinitely many but also lie in a continuous set, the
generalization is not trivial. Fortunately, we find that we can
borrow the idea behind semi-infinite programming (SIP) [26],
[47] to deal with the semi-infinite constraints. Accordingly, we
propose semi-infinitely constrained Markov decision processes
(SICMDPs) as a novel complement to the ordinary CMDP
framework.

We also present two reinforcement learning algorithms to
solve SICMDPs called semi-infinitely constrained model-based
reinforcement learning (SI-CMBRL) and semi-infinitely con-
strained policy optimization (SI-CPO), respectively. SI-CMBRL
is a model-based reinforcement learning algorithm designed for
tabular cases, and SI-CPO is a policy optimization algorithm for
non-tabular cases. The main challenge is that we need to deal
with a continuum of constraints, thus reinforcement learning
algorithms for ordinary CMDPs do not work anymore. In SI-
CMBRL, we tackle this difficulty by first transforming the rein-
forcement learning problem to an equivalent linear semi-infinite
programming (LSIP, or also SILP in some literature) problem,
which can then be solved using methods in the LSIP literature
like the dual exchange methods [27], [46]. In SI-CPO, we resort
to the idea of cooperative stochastic approximation developed
in [33], [65]. As far as we know, we are the first to introduce
tools from SIP into the reinforcement learning community for
solving constrained reinforcement learning problems.

Furthermore, we give theoretical analysis for both SI-CMBRL
and SI-CPO. For SI-CMBRL, we decompose the error into
two parts: the statistical error from approximating the true
SICMDP with an offline dataset and the optimization er-
ror due to the fact that the solution of the LSIP problem
obtained by the dual exchange method is inexact. On the
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optimization side, we show that the iteration complexity of
SI-CMBRL isO({diam(Y )L

√
|S|2|A|m/[(1−γ)ε]}m), whereY ⊂ R

m

denotes the set a continuum of constraints and diam(Y ) :=
supy1,y2∈Y ‖y1 − y2‖∞. On the statistical side, we show that the

sample complexity of SI-CMBRL is Õ( |S|
2|A|2

ε2(1−γ)3 ) if the offline

dataset is generated by a generative model, and Õ( |S||A|
νminε2(1−γ)3 )

if the dataset is generated by a probability measure ν as consid-
ered in [14]. Here Õmeans that all logarithm terms are discarded.
For SI-CPO, things become a little more complicated because,
other than the statistical error and the optimization error, we
also need to consider the function approximation error, which
comes from imperfect policy parametrizations. It is shown that
if the function approximation error can be controlled to O(ε)

order, the iteration complexity of SI-CPO is Õ( 1
ε2(1−γ)6 ) and

the sample complexity of SI-CPO is Õ( 1
ε4(1−γ)10 ). Here our

iteration complexity bound is equivalent to a typical Õ(1/
√
T )

global convergence rate.
At the technical level, we make the following new develop-

ments to the literature: 1) our analysis of the statistical errors of
SI-CMBRL is new and never appears in previous works; 2) our
analysis of SI-CPO is the first try on theoretical analysis of co-
operative stochastic approximation in the context of non-convex
SIP.

We perform a set of numerical experiments to illustrate
the SICMDP model and validate our proposed algorithms.
Specifically, we examine two numerical examples, namely the
discharge of sewage and ship route planning. Through the
discharge of sewage example, we show the advantage of the
SICMDP framework over the CMDP baseline obtained by naive
discretization in modeling realistic sequential decision-making
problems. Moreover, we demonstrate the effectiveness of the
SI-CMBRL and SI-CPO algorithms in such tabular environ-
ments. In the ship route planning example, we illustrate the
benefits of the SICMDP framework and the ability of the SI-CPO
algorithm to address complex continuous control tasks involv-
ing continuous state spaces with modern deep reinforcement
learning techniques.

II. RELATED WORK

Constrained Markov decision processes (CMDPs) have been
extensively applied in areas like robotics [41], communication
and networks [36], [52] and finance [1]. For a detailed treatment
of CMDPs readers may refer to [6]. A number of reinforcement
learning algorithms for CMDPs are proposed, which can be
divided into model-based methods and model-free methods. For
model-based methods, [61], [71] considered the case where the
reward and cost are random but the transition dynamics are
known. [7], [20], [25] considered the case where the transition
dynamics are unknown and need to be estimated, which is a
more common setting in the literature of reinforcement learn-
ing. And [59] gave a near-minimax-optimal sample complexity
bound of learning CMDPs. Most model-free methods can in-
deed be categorized as policy optimization methods. [19], [58]
utilized a primal-dual approach that transforms the constrained
problem into an unconstrained one by considering the Lagrange

functions. [2], [35], [67] addressed the constrained problem
by adding constraints to the sub-problems used to compute
the updating direction in each iteration step. [66] proposed to
solve the CMDP problem by performing alternating updates to
maximize the reward or minimize the cost.

The origination of semi-infinite programming (SIP) can date
back to [47]. From then on, SIP has been widely used in quantum
physics [13], signal processing [38], [40], finance [18], stochas-
tic control [9], and engineering [26]. One may refer to [23], [26]
for a detailed overview of SIP as well as its recent advances.
One important class of SIP problems is called linear semi-infinite
programming (LSIP). [22] provides a thorough survey about the
LSIP theory. Various numerical methods are proposed to solve
SIP problems, including discretization methods [11], [45], [55],
exchange methods [27], [70], interior point methods [54], and
Newton-type methods [39], [44]. In SI-CMBRL, we choose to
use the dual exchange method in [27] to solve the LSIP prob-
lem therein. Compared to other numerical methods especially
Lagrangian-based methods, the chosen dual exchange method is
conceptually simpler because there is no need to introduce con-
cepts like Lagrangians or KKT conditions. Another advantage
is that it is a one-phase algorithm and we do not need to make
extra efforts to find a feasible starting solution. Recently, [65]
proposed to solve SIP problems via the cooperative stochastic
approximation method, which was first developed in [33] to
solve convex stochastic optimization problems with functional
or expectation constraints.

Our SI-CMBRL algorithm uses a similar strategy as in [20]
in the sense that they all use the optimistic method to transform
the reinforcement learning problem into a linear (semi-infinite)
programming problem, which resolves the feasibility issue and
makes the theoretical analysis easier as well. However, our work
and [20] are very different at the technical level: 1) our theoretical
guarantees are in the form of sample complexity bounds, while
the results in [20] are in the form of online regret bounds; the
proof techniques are quite different; and 2) [20] considered
episodic MDPs, while we consider the infinite-horizon case.

The algorithmic framework of the proposed SI-CPO method
may seem similar to methods proposed in [65]. Our SI-CPO
algorithm differs from the comirror algorithm in [65] because we
focus on tackling non-convex loss functions with semi-infinite
constraints, whereas their focus remains on solving convex SIP
problems.” Because the non-convex loss function is induced by
large-scale reinforcement learning problems, we choose policy
gradient algorithms with function approximations to update the
optimization variables. In contrast, the comirror method uses
plain gradient descent to update the optimization variables. Also,
the theoretical guarantees of SI-CPO are obtained with different
analysis techniques. The CRPO algorithm in [66] can be viewed
as a special example of our SI-CPO algorithm. Readers could
refer to Remark 6 for more details.

This work is an extended version of the proceedings pa-
per [69]. We extend [69] in the following ways: 1) We propose a
new reinforcement learning algorithm named SI-CPO for solv-
ing large-scale SICMDPs and validate its efficacy in numerical
experiments; 2) we give a theoretical analysis of SI-CPO in-
cluding the iteration complexity bounds and sample complexity
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bounds; 3) we also refine the theoretical analysis of SI-CRL,
where we discard the assumption that a subproblem must be
exactly solved and give new iteration complexity bounds.

III. THE SICMDP MODEL

A semi-infinitely constrained MDP (SICMDP) is defined
by a tuple M = 〈S,A, Y, P, r, c, u, μ, γ〉. Here S,A, P, r, μ, γ
are defined in a similar manner as in common infinite-horizon
discounted MDPs. Specifically, S and A are the finite sets of
states and actions, respectively. P is the transition dynamics
and P (s′|s, a) represents the probability of transitioning to state
s′ when playing action a at state s. And r : S ×A → [0, 1] is
the reward function, μ is the fixed initial distribution over S ,
and γ is the discount factor. Y is the set of constraints, which we
define as a compact set in R

m, and diam(Y ) <∞ denotes its
diameter, that is, diam(Y ) := supy,y′∈Y ‖y − y′‖∞. In addition,
c : Y × S ×A → [0, 1] is used to denote a continuum of cost
functions and the value for constraints (bounds that must be
satisfied) is determined by the function u : Y → R. Note that
when Y is finite, we get an ordinary constrained MDP, which is
indeed a special case of SICMDP.

For a given policy π, we define the value function

V πr (s) = Eat|st∼π(·|st)

( ∞∑
t=0

γtr(st, at)|s0 = s

)
,

the state-action value function

Qπr (s, a) = Eat|st∼π(·|st)

( ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

)
,

and the advantage function Aπr (s, a) = Qπr (s, a)− V πr (s).
Here V πcy (s), Q

π
cy
(s, a) and Aπcy (s, a) are defined in a sim-

ilar manner. Let the occupancy measure on S ×A intro-
duced by policy π be νπ ∈ Δ(S ×A) and νπ(s, a) = (1− γ)∑∞
t=0 γ

t
Pπ(st = s, at = a).

The general SICMDP problem is to find a stationary policy
π : S → Δ(A), where Δ(A) is the set of probability measure
supported onA, to maximize the value function while complying
with a continuum of constraints. In other words, we consider the
following optimization problem:

max
π

V πr (μ) s.t. V πcy (μ) ≤ uy, ∀y ∈ Y. (M)

Let us see two concrete examples of SICMDPs.
Example 1 (Spatio-temporal Constraints): Consider an ordi-

nary CMDP problem with a single constraint:

max
π

V πr (μ) s.t. V πc (μ) ≤ u. (1)

In some cases the constraint would be spatio-temporal, i.e., the
cost function c(s, a) and the value for constraints u are no longer
constant functions and would change with time τ ∈ [0, T ] or
location x ∈ X ⊂ R

3. Then we should use the SICMDP model
with Y = [0, T ] or Y = X rather than the ordinary CMDP
framework to model such problems:

max
π

V πr (μ) s.t. V πcτ (μ) ≤ uτ , ∀τ ∈ [0, T ], (2)

or

max
π

V πr (μ) s.t. V πcx(μ) ≤ ux, ∀x ∈ X . (3)

Load Balancing: We consider a problem in mobile communi-
cations. Suppose a mobile network operator wants to deploy an
RL agent to balance the load between multiple cell sites using
some policy π. The objective is to minimize the total mainte-
nance cost of all cell sites −V πr (μ) and the constraint is that, at
every place x in the region X , the cumulative communication
capacity V πcx(μ) is above some adaptive threshold ux.

Ship Route Planning: Suppose we need to navigate a ship
using some policy π. Our objective is to minimize the voyage
duration. The constraint is that at every place x in the region X
the cumulative environmental pollution V πcx(μ) is below some
adaptive threshold ux.

Example 2 (Constraints with Uncertainty): Again we con-
sider a problem like Problem (1). In many application scenarios
the cost function c(s, a) is handcrafted and the construction
of c(s, a) is not guaranteed to be correct. Hence it may be
helpful to include an additional parameter ε ∈ E representing
our uncertainty in the construction of the cost function c(s, a)
as well as the value of constraints u. Even if the constraint is
not handcrafted and has clear physical meaning, it may still be
subject to uncertain parameters ε ∈ E that cannot be observed
in advance. Therefore, we should use the SICMDP model with
Y = E rather than the ordinary CMDP framework to model
such problems:

max
π

V πr (μ) s.t. V πcε(μ) ≤ uε, ∀ε ∈ E. (4)

Underwater Drone: Suppose an underwater drone needs to
maximize V πr (μ) to accomplish some tasks. When the unknown
environment feature (salinity, temperature, ocean current, etc,) is
ε ∈ E, for a given state s the drone needs to expend an amount of
energy denoted by cε(s, a) to execute action a. The constraint
is that total energy consumption V πcε(μ) cannot be larger than
an adaptive threshold uε, ensuring that the remaining battery
capacity is adequate for the return journey.

Remark 1: An alternative approach to solving problems such
as Examples 1 and 2 is to naively discretize the constraint set Y ,
and then the discretized problem can be fit into the conventional
CMDP framework. We call this strategy naive discretization.
The problem with this naive method is that the prior knowledge,
i.e., the constraint function is continuous w.r.t. y, would be lost,
which makes the method extremely inefficient. In Section VI we
demonstrate this issue via numerical examples.

When a SICMDPM is known to us, we may do the planning
by solving a linear semi-infinite programming (LSIP) problem.
Problem (M) can be reformulated as the following LSIP prob-
lem:

max
ν

ν�r

s.t.
1

1− γ ν
�cy ≤ uy, ∀y ∈ Y.

∑
s′,a

ν(s′, a)(1{s′=s}−γP (s|s′, a))=(1−γ)μ(s), ∀s ∈ S.
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ν � 0. (5)

Here ν represents the occupancy measure on S ×A induced
by some policy π. The reformulation is valid because we have
V πr (μ) = 1

1−γ ν
�r and V πcy (μ) =

1
1−γ ν

�cy . And the constraints
on ν guarantee it is a valid occupancy measure. For more details
one may refer to Chapter 8 of [5]. Therefore, whenM is already
known the optimal policy π∗ can be found by solving Problem
(5) and use the π(a|s) = νπ(s,a)

∑

a′∈A νπ(s,a′)
. And we always assume

such a policy π∗ exists.
Assumption 1: Problem (M) is feasible with an optimal solu-

tion π∗, or equivalently, Problem (5) is feasible with an optimal
solution ν∗.

IV. ALGORITHMS

In this section, we present two reinforcement learning algo-
rithms called semi-infinitely constrained model-based reinforce-
ment learning (SI-CMBRL) and semi-infinitely constrained pol-
icy optimization (SI-CPO), respectively. SI-CMBRL is a model-
based reinforcement learning algorithm that can solve tabular
SICMDPs in a sample-efficient way. The SI-CPO algorithm
is a policy optimization algorithm and it works for large-scale
SICMDPs where we can use complex function approximators
such as deep neural networks to approximate the policy and the
value function.

A. The SI-CMBRL Algorithm

From a high-level point of view, the SI-CMBRL algorithm
is a semi-infinite version of the algorithms proposed in [20],
[25]. In the first stage, SI-CMBRL takes an offline dataset
{(si, ai, s′i)|i = 1, 2, . . . , n} as input and generates an empirical
estimate P̂ of the true transition dynamic P . Then the algorithm
constructs a confidence set (the optimistic set) according to P̂
that would cover the true SICMDP with high probability. For
each policy π we would view its return as the largest possible
return in SICMDPs in the confidence set. This method is also
called the optimistic approach. In the second stage, we refor-
mulate the problem as an LSIP problem and find the optimistic
policy π̂ using an LSIP solver. It can be shown that the resulting
policy π̂ is guaranteed to be nearly optimal, and the theoretical
analysis can be found in Section V-A.

Now we give a more detailed description of SI-CMBRL.
First, the empirical estimate P̂ is calculated as: P̂ (s′|s, a)
:= n(s,a,s′)

max(1,n(s,a)) , where n(s, a, s′) :=
∑m
i=1 1{si = s, ai =

a, s′i = s′} and n(s, a) =
∑
s′ n(s, a, s

′). The reason why we
do not directly plug P̂ into Problem (5) and solve the resulting
LSIP problem is due to the lack of guarantee that the LSIP
problem w.r.t. P̂ is feasible. To address this issue, we construct
an optimistic set Mδ such that, with high probability, the true
SICMDP M lies in Mδ . In particular, Mδ is defined via the
empirical Bernstein’s bound and the Hoeffding’s bound [34]:

Mδ :=

{
〈S,A, Y, P ′, r, c, u, μ, γ〉 :

|P ′(s′|s, a)−P̂ (s′|s, a)|≤dδ(s, a, s′), ∀s, s′ ∈ S, a ∈ A
}
,

where

dδ(s, a, s
′) := min

⎧⎨
⎩
√

2P̂ (s′|s, a)(1−P̂ (s′|s, a)) log(4/δ)
n(s, a, s′)

+
4 log(4/δ)

n(s, a, s′)
,

√
log(2/δ)

2n(s, a, s′)

}
.

The next step is to solve the optimistic planning problem:

max
M ′∈Mδ,π

V π,M
′

r (μ), s.t. V π,M
′

cy
(μ) ≤ uy, ∀y ∈ Y, (6)

where the superscript M ′ denotes that the expectation is taken
w.r.t. SICMDP M ′.

Theorem 1: Suppose n/|S||A| ≥ 3. With probability at least
1− 2|S|2|A|δ, we have that M ∈Mδ , and Problem (6) is fea-
sible.

The proof is in Appendix A, available online. Note that
the optimization variables include both M ′ and π, and LSIP
reformulations like Problem (5) would no longer be possible.
Instead, we shall introduce the state-action-state occupancy
measure z(s, a, s′). In particular, assuming zP,π(s, a, s

′) :=
P (s′|s, a)νπ(s, a), we have P (s′|s, a) = zP,π(s,a,s

′)
∑

x∈S zP,π(s,a,x)
, and

π(a|s) =
∑

s′∈S zP,π(s,a,s
′)

∑

s′∈S,a′∈A zP,π(s,a′,s′)
. Problem (6) can be reformulated

as the following extended LSIP problem:

max
z

∑
s,a,s′

z(s, a, s′)r(s, a)

s.t.
1

1− γ
∑
s,a,s′

z(s, a, s′)cy(s, a) ≤ uy, ∀y ∈ Y.

z(s, a, s′) ≤ (P̂ (s′|s, a) + dδ(s, a, s
′))
∑
x∈S

z(s, a, x),

∀s, s′ ∈ S, a ∈ A.
z(s, a, s′) ≥ (P̂ (s′|s, a)− dδ(s, a, s′))

∑
x∈S

z(s, a, x),

∀s, s′ ∈ S, a ∈ A.∑
x∈S,b∈A

z(s, b, x) = (1− γ)μ(s) + γ
∑

x∈S,b∈A
z(x, b, s),

∀s ∈ S.
z � 0. (7)

However, compared to LP problems, LSIP problems are
typically harder to solve and there are no all-purpose LSIP
solvers. Here, we choose the simple yet effective dual exchange
methods [27], [46] to solve Problem (7). The SI-CMBRL algo-
rithm can be summarized in Algorithm 1. At the t th iteration
of Algorithm 1, we solve a finite LP problem with a set of
constraints indexed by Y0 ∈ Y and get a solution z(t). The finite
LP problem serves as an approximation of the original LSIP
problem. Then we determine if z(t) is feasible. If the answer is
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Algorithm 1: SI-CMBRL.

Input: state space S , action spaceA, dataset {(si, ai, s′i)|
i = 1, 2, . . ., n}, reward function r, a continuum of cost
functions c, index set Y , value for constraints u, discount
factor γ, tolerance η, maximum iteration number T .

for each (s, a, s′) tuple do
Set P̂ (s′|s, a) :=

∑n
i=1 1{si=s,ai=a,s′i=s′}

max(1,
∑n

i=1 1{si=s,ai=a})
end for
Initialize Y0 = {y0}
for t = 1 to T do
Use an LP solver to solve a finite version of Problem (7)
by only considering constraints in Y0 and store the
solution as z(t).

Find y(t) ≈ argmaxy∈Y
∑
s,a,s′ z

(t)(s, a, s′)cy
(s, a)− uy .

if
∑
s,a,s′ z

(t)(s, a, s′)cy(t)(s, a)− uy(t) ≤ η then
Set z(T ) = z(t).
BREAK

end if
Add y(t) to Y0.

end for
for each (s, a) pair do

Set π̂(a|s) =
∑

s′ z
(T )(s,a,s′)

∑

s′,a′ z(T )(s,a′,s′) .

end for
RETURN π̂.

true then z(t) is the desired solution of the LSIP problem. Or we
find the most violated constraint and add it to Y0 to form a new
LP, which forms a finer approximation of the LSIP problem.

A key ingredient of Algorithm 1 is solving the inner-loop
optimization problem

max
y∈Y

∑
s,a,s′

z(s, a, s′)cy(s, a)− uy.

We can obtain different versions of SI-CMBRL algorithm by
choosing different optimization subroutines to solve the inner-
loop problem above. If cy and uy satisfy conditions like con-
cavity and smoothness, then the inner problem can be solved
using methods like projected subgradient ascent [12]. If the inner
problem is ill-posed, we may still solve it using methods like
random search [8], [53]. An interesting question is what would
happen if Assumption 1 is not true. Unfortunately, it may just
keep running and never halt providing that the inner optimization
problem can be accurately solved.

B. The SI-CPO Algorithm

In SI-CPO, we borrow ideas from the cooperative stochastic
approximation [33], [65] to deal with the infinitely many con-
straints. At a certain iteration, the SI-CPO algorithm first deter-
mines whether the constraint violation is below some tolerance
or not. It then performs a single step of policy optimization along
the direction of maximizing the value of reward if the constraint
violation is below some tolerance; or performs a single step of

policy optimization along the direction of minimizing the value
of some cost corresponding to a violated constraint.

We now describe the SI-CPO algorithm in more detail. We
follow the convention to define the parameterized policy class
as {πθ, θ ∈ Θ ⊂ R

d} and use π(t) as short for πθ(t) , V
(t)
� as

short for V π
(t)

� for ease of notation. Here � represents either the
reward r or some cost cy . Suppose at the t-th iteration our policy

parameter is θ(t), then we first construct an estimate V̂ (t)
cy (μ)

using some policy evaluation subroutine. Next, we are to solve
a subproblem using some optimization subroutine

y(t) = argmax
y

V̂ π
(t)

cy
(μ)− uy.

If V̂ π
(t)

c(t)
(μ)− uy(t) ≤ η, where c(t) := cy(t) and η > 0 is a tol-

erance threshold, we say the constraint violation is small and
add the time index t to the “good set” B. Then we perform a step
of update with a policy optimization subroutine to maximize the
value of reward V (t)

r (μ) to get θ(t+1). Else, we first add the time
index t to the “bad set”N . Next, we find the violated constraint
V π

(t)

c(t)
(μ)− uy(t) > η, and perform a step of update with a policy

optimization subroutine to minimize the value of cost V π
(t)

c(t)
(μ)

to get θ(t+1). After T iterations, we draw θ̂ uniformly from the
set {θ(t), t ∈ B}, as return the policy π̂ = πθ̂. The procedure of
SI-CPO is summarized in Algorithm 2.

We can get different instances of the SI-CPO algorithms by
making different choices of the subroutines aforementioned.
Specifically, the policy optimization subroutine can be any
policy optimization algorithm like policy gradient (PG) [57],
natural policy gradient (NPG) [29], trust-region policy gradi-
ent (TRPO) [48], or proximal policy optimization (PPO) [49].
The policy evaluation subroutine can be chosen as Monte-Carlo
policy evaluation algorithms [16] or various TD-learning algo-
rithms [17], [56]. We may also integrate the policy optimization
subroutine and the policy evaluation subroutine into actor-critic-
type algorithms [32]. The optimization subroutine can be any
optimization algorithm suitable for the problem instance, like
the case in Algorithm 1.

V. THEORETICAL ANALYSIS

A. Theoretical Analysis of SI-CMBRL

We give PAC-type bounds for SI-CMBRL under different
settings. The error of SI-CMBRL is decomposed into two parts:
the optimization error from the inexactness of the solution of
(6) obtained by the dual exchange method, and the statistical
error from approximating Problem (M) with Problem (6). On
the optimization side, we show that if the inner maximiza-
tion problem w.r.t. y is solved via random search or projected
subgradient ascent, the dual exchange method would produce
an ε-optimal solution (see Definition 2) when the number of
iterations T = O([ diam(Y )|S|2|A|

(1−γ)ε ]m).
On the statistical side, our goal is to determine how many

samples are required to make SI-CMBRL (ε, δ)-optimal (see
Definition 1) when Problem (6) can be solved exactly, i.e., we
want to find the sample complexity of SI-CMBRL (see Defini-
tion 1). We show that the sample complexity of SI-CMBRL is
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Algorithm 2: SI-CPO.
Input: state space S , action space A, reward function r,
a continuum of cost function c, index set Y , value for
constraints u, discount factor γ, learning rate α,
tolerance η, maximum iteration number T .

Initialize B = ∅, N = ∅, θ(0) = θ0 ∈ Θ.
for t = 0, . . ., T − 1 do

Obtain V̂ π
(t)

cy
(μ) via a policy evaluation subroutine.

Use an optimization subroutine to solve
maxy V̂

π(t)

cy
(μ)− uy , and set

y(t) ≈ argmaxyV̂
π(t)

cy
(μ)− uy , c(t) = cy(t) .

if V̂ π
(t)

c(t)
(μ)− uy(t) ≤ η then

Perform a step of policy update to maximize V π
(t)

r (μ)
to get π(t+1). Specifically, θ(t+1) = θ(t) + αŵ(t).

Add t to B
else

Perform a step of policy update to minimize V π
(t)

c(t)
(μ)

to get π(t+1). Specifically, θ(t+1) = θ(t) − αŵ(t).
Add t to N

end if
end for
RETURN π̂ = πθ̂, where θ̂ ∼ Unif({θ(t), t ∈ B}).

Õ( |S|
2|A|2

ε2(1−γ)3 ) if the dataset we use is generated by a generative

model, and Õ( |S||A|
νminε2(1−γ)3 ) if the dataset we use is generated

by a probability measure ν defined on the space S ×A and
P (·|s, a) as considered in [14]. Here Õ means that all logarithm
terms are discarded, and νmin := minν(s,a)>0 ν(s, a). We will
present our theoretical analysis in more detail in the remainder
of this section.

1) Preliminaries: Letπ∗ denote the optimal policy. An (ε, δ)-
optimal policy is defined as follows.

Definition 1: An RL algorithm is called (ε, δ)-optimal for
ε, δ > 0 if, with probability at least 1− δ, it returns a policy π
such that

V π
∗

r (μ)− V πr (μ) ≤ ε; V πcy (μ)− uy ≤ ε, ∀y ∈ Y.

An ε-optimal solution of Problem (6) is defined as
Definition 2: A stationary policy π̂ is called an ε-optimal

solution of Problem (6) for ε > 0 if

|V π̂r (μ)− V π̃r (μ)| ≤ ε and |V π̂cy (μ)− uy| ≤ ε, ∀y ∈ Y

hold simultaneously. Here π̃ is the optimal solution of Problem
(6).

Unless otherwise specified, we assume that ∀(s, a) ∈ S ×A,
cy(s, a) is Ly-Lipschitz in y w.r.t. ‖ · ‖∞. We also assume that
uy is Ly-Lipschitz in y w.r.t. ‖ · ‖∞. The assumptions can be
formally stated as:

Assumption 2: cy(s, a) and uy are Lipschitz in y w.r.t.
‖ · ‖∞, i.e., ∃Ly > 0 s.t. ∀y, y′ ∈ Y, (s, a) ∈ S ×A, |cy(s, a)−
cy′(s, a)| ≤ Ly‖y − y′‖∞, |uy − uy′ | ≤ Ly‖y − y′‖∞.

The Lipschitz assumption is usually necessary when dealing
with a semi-infinitely constrained problem [27], [55]. And this
assumption is indeed quite mild because Y is a compact set.

We say an offline dataset {(si, ai, s′i)|i = 1, 2, . . . , n} to be
generated by a generative model if we sample according to
P (·|s, a) for each (s, a)-pair n0 = n/|S||A| times and record
the results in the dataset. We say an offline dataset to be generated

by probability measure ν and P (·|s, a) if (si, ai)
i.i.d.∼ ν and

s′i ∼ P (·|si, ai).
We solve the inner-loop problem in Algorithm 1 with random

search or projected gradient ascent. The idea of random search
is simple. For an objective f(y) defined on domain Y , we form a
random grid of Y consisting ofM grid points and select the grid
point with the largest objective value. The projected subgradient
ascent is defined in a standard way [12]. The precise definitions
can be found in Algorithm 4 and Algorithm 5 in Appendix F,
available online in our supplementary material.

2) Iteration Complexity of SI-CMBRL: We give the itera-
tion complexity of SI-CMBRL, i.e., how many iterations are
required to output an ε-optimal solution of Problem (6) when
near-optimal solutions of the inner-loop optimization problems
can be obtained. Our result is similar to Theorem 4 in [27].
Specifically, we consider two different cases: 1) we make no
assumption of the constraint and use random search to solve the
inner-loop problem; 2) we assume the constraint is concave and
use projected subgradient ascent to solve the inner-loop problem.

Before we give the iteration complexity in the case of random
search, we make the following assumption to ensure technical
rigor.

Assumption 3: For any weight v ∈ R
S×A, let y0 ∈ arg

maxy∈Y (v�cy − uy). Then ∃ε0 such that

{y : ‖y − y0‖∞ ≤ ε0} ⊂ Y.

Assumption 3 guarantees any possible solution of the inner-
loop problem lies in the interior of Y .

Theorem 2: Suppose we use random search to solve
the inner-loop problem of the SI-CMBRL algorithm. If
Assumption 3 holds and we set the size of random grid M =

O( log(δ/T )
log(1−((1−γ)ε/|S|2|A|diam(Y ))m) ), T = O([ diam(Y )|S|2|A|

(1−γ)ε ]m),
SI-CMBRL would output a ε-optimal solution of Problem (7)

with probability at least 1− δ. Here we require ε ≤ 2|S|2|A|Lyε0
1−γ .

The proof can be found in Appendix B, available online in
our supplementary material. To derive theoretical guarantees for
the case of projected subgradient ascent, we need the following
assumption of concavity.

Assumption 4: For any (s, a) ∈ S ×A, cy(s, a) is concave
in y. In addition, uy is convex in y.

Theorem 3: Suppose we use projected gradient ascent to
solve the inner-loop problem of the SI-CMBRL algorithm.
If Assumption 4 is true and we set the iteration number of
the projected subgradient ascent TPGA = O( |S|

4|A|2diam(Y )2

(1−γ)2ε2 ),

T = O([ diam(Y )|S|2|A|
(1−γ)ε ]m), SI-CMBRL would output a ε-optimal

solution of Problem (7).
One may refer to Appendix B, available online in our supple-

mentary material for the detailed proofs. The most crucial part
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of our proofs is an ε-packing argument. Suppose we can get a
ε/2-optimal solution to the inner-loop problem by either random
search of projected subgradient ascent and set the tolerance
η = ε/2. By the assumption of Lipschitzness and the construc-
tion of the SI-CMBRL algorithm, for any t ≤ T , either the
SI-CMBRL algorithm has already terminated and we obtain a
ε-optimal solution to Problem 7, or {B(t′), t′ = 1, . . ., t} forms a
packing of Y . Here B(t′) := {y : ‖y − y(t′)‖∞ ≤ ε/2β}, and β
is some Lipschitz coefficient. Then we may draw the conclusion
by noting that the maximum iteration number of SI-CMBRL is
no larger than the ε/2β-packing number of Y . We find that [27]
also used similar techniques to derive their convergence rate,
although they assume the inner-loop problem can always be
solved exactly.

Remark 2: The iteration complexity of the SI-CMBRL al-
gorithm grows with m in an exponential manner. Thus from
a theoretical viewpoint, the SI-CMBRL algorithm is no better
than the naive discretization method mentioned in Remark 1.
However, we find SI-CMBRL is far more efficient than the naive
method in empirical evaluations. Perhaps it is because our bound
of iteration complexity is obtained by the packing argument and
not tight enough. Hopefully, the bound can be tightened by a
refined analysis of the dynamics of {(y(t), z(t)), t = 1, . . ., T}.

3) Sample Complexity of SI-CMBRL: We consider the case
where the offline dataset we use is generated by a generative
model. First, we consider a restricted setting as in [34] where
for each (s, a)-pair in the true SICMDP there are at most two
possible next-states and provide the sample complexity bound.
Then we will drop Assumption 5 using the same strategy as
in [34] and derive the sample complexity bound of the general
case.

Assumption 5: The true unknown SICMDP M satisfies
P (s′|s, a) = 0 for all but two s′ ∈ S denoted as sa+ and sa− ∈
S .

Although Assumption 5 seems quite restrictive, we argue that
it is necessary to establish sharp sample complexity bound, as
shown in [34]. Specifically, without this assumption the “quasi-
Bernstein bound” will not hold, thus we may not be able to get
the Õ((1− γ)−3) bound.

Lemma V.1: Suppose Assumption 5 holds, and the dataset we
use is generated by a generative model with n/|S||A| = n0 >

max{ 36 log 4/δ
(1−γ)2 , 4 log 4/δ

(1−γ)3 }. Then with probability 1− 2|S|2|A|δ,
we have that

V π
∗

r (μ)− V π̃r (μ) ≤ 24

√
log 4/δ

n0(1− γ)3 ;

V π̃cy (μ)− uy ≤ 12

√
log 4/δ

n0(1− γ)3 , ∀y ∈ Y.

Here π̃ is the exact solution of Problem (6).
Theorem 4: Suppose Assumption 5 holds, the dataset we use

is generated by a generative model and Problem 6 can be solved

exactly. Then when n = O( |S||A| log(8|S|
2|A|/δ)

ε2(1−γ)3 ), SI-CMBRL is
(ε, δ)-optimal.

Proof: Theorem 4 is a direct consequence of Lemma V.1.
Theorem 5: Suppose the dataset we use is generated by a

generative model and Problem 6 can be solved exactly. Then
when n = O( |S|

2|A|2(log |S|)3 log(8|S|4|A|3/δ)
ε2(1−γ)3 ), a modification of

SI-CMBRL is (ε, δ)-optimal.
The detailed proof can be found in Appendix B, available

online in our supplementary material. Our proof strategy is
similar to [34]. However, to get a Õ((1− γ)−3) bound, [34]
used a tedious recursion argument. We greatly simplify the
proof and achieve improvements in log terms (by a factor of
(log( |S|

ε(1−γ) ))
2) using sharper bounds on local variances of

MDPs developed in [3].
Remark 3: It can be noted that our sample complexity bound

does not rely on the constraint setY . This is because we consider
the setting where r and cy are known deterministic functions
and the only source of randomness comes from estimating the
unknown transition dynamic using an offline dataset. In other
words, the constraints do not make the problem more difficult
in the statistical sense.

Remark 4: Here “a modification of SI-CMBRL” stands for the
following procedure: first we transform the original SICMDP
to a new SICMDP satisfying Assumption 5, then we run SI-
CMBRL to solve the new SICMDP. One may refer to the proof
in Appendix B, available online in our supplementary material
for more details.

Now we generalize our results to the case where the offline
dataset is generated by a probability measure.

Theorem 6: Suppose the dataset we use is generated by a
probability measure ν and Problem 6 can be solved exactly.
Then whenm = O( |S||A|(log |S|)

3 log(8|S|4|A|3/δ)
νminε2(1−γ)3 ), a modification

of SI-CMBRL is (ε, δ)-optimal.
One may find the proof in Appendix B, available online in

our supplementary material.

B. Theoretical Analysis of SI-CPO

In this section, we present theoretical guarantees of SI-CPO.
We consider a version of the SI-CPO algorithm where we use
sample-based NPG [4] as the policy optimization subroutine,
a finite-horizon Monte-Carlo estimator as the policy evaluation
subroutine, and either random search or projected subgradient
ascent as the optimization subroutine. It is shown that when the
function approximation error εbias is of the same order with ε,
our proposed algorithm takes Õ( 1

ε2(1−γ)6 ) iterations and make

Õ( 1
ε4(1−γ)10 ) interactions with the environment to achieve an

ε-level of averaged suboptimality with high probability. This
corresponds to a Õ(1/

√
T ) global convergence rate, which is

typical for NPG-based policy optimization algorithms. We give
a detailed description of the considered version of the SI-CPO
algorithm as well as our technical assumptions in Section V-B1
and present the theoretical results in Sections V-B2 and V-B3.
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1) Preliminaries: Recall the policyπ is parameterized by θ ∈
Θ ⊂ R

d (denoted by πθ). We make the following assumptions
about the parameterized policy class.

Assumption 6 (Differentiable policy class): Π can be
parametrized as Πθ = {πθ|θ ∈ R

d} such that, for all s ∈ S , a ∈
A, logθ π(a|s) is a differentiable function of θ.

Assumption 7 (Lipschitz policy class): For all s ∈ S , a ∈ A,
log πθ(a|s) is a Lπ-Lipschitz function of θ, i.e.,

‖∇θ log πθ(s|a)‖2 ≤ Lπ, ∀s ∈ S, a ∈ A, θ ∈ R
d.

Assumption 8 (Smooth policy class): For all s ∈ S , a ∈ A,
log πθ(a|s) is a β-smooth function of θ, i.e.,

‖∇θ log πθ(a|s)−∇θ log πθ′(a|s)‖2 ≤ β‖θ − θ′‖2,
∀s ∈ S, a ∈ A, θ, θ′ ∈ R

d.

Assumption 9 (Positive semidefinite Fisher information): For
all θ ∈ R

d,

F (θ) := E(s,a)∼νθ [∇θ log πθ(a|s)∇θ log πθ(a|s)�] � μF Id.
The assumptions above are standard in the literature of policy

optimizations [4]. Assumption 6–8 require that log πθ(a|s) is a
smooth function of θ, and can be fufilled by most parametrized
policy classes. Assumption 9 states that F (θ) is a good pre-
conditioner in the NPG update. This is a common requirement
for the convergence of preconditioned algorithms, for exam-
ple, the quasi-Newton algorithms [50]. We also assume the
parametrization realizes good function approximation in terms
of transferred compatible function approximation errors, which
was first introduced by [4]. The error term can be close to zero if
the policy class is rich [64] or the underlying MDP has low-rank
structures [28].

Assumption 10 (Bounded function approximation error): The
transferred compatible function approximation errors satisfy
that ∀t ∈ {1, . . ., T}

min
w
Eν

(t)

(r, θ(t), w) ≤ εbias

min
w
Eν

(t)

(cy, θ
(t), w) ≤ εbias ∀y ∈ Y,

where ν(t) denotes the state-action occupancy measure induced
by policy π(t). The transferred compatible function approxima-
tion errors are defined as:

Eν(�, θ, w) := E(s,a)∼ν(Aπθ� (s, a)− w�∇θ log πθ(a|s))2.
Besides, we also assume the weights to minimize the trans-

ferred compatible function approximation errors are bounded.
Assumption 11 (Bounded Weight): For any t ∈ {1, . . ., T},
∀y ∈ Y , ∥∥∥∥argmin

w
Eν

(t)

(r, θ(t), w)

∥∥∥∥
2

2

≤W 2,

∥∥∥∥argmin
w

Eν
(t)

(cy, θ
(t), w)

∥∥∥∥
2

2

≤W 2.

In the theoretical analysis of SI-CPO, we consider an instance
of SI-CPO where we use a sample-based version of NPG [4] as
the policy optimization subroutine, a fixed-horizon Monte-Carlo

estimator as the policy evaluation subroutine, and either random
search or projected subgradient ascent as the optimization sub-
routine. In the NPG algorithm, we use the following natural
policy gradient w(t) to update the policy parameters:

w(t) := F (θ(t))†E(s,a)∼ν(t)(Aπ
(t)

� (s, a)∇θπθ(a|s)).
Here � can be either the reward r or some cost function cy .
However, for most RL problems it is computationally prohibitive
to evaluate F (θ)†, and E(s,a)∼ν(t)(Aπ

(t)

� (s, a)∇θπθ(a|s)) are
usually unknown to the algorithm. Therefore, we instead use a
sample-based estimate ofw(t), which can be obtained by solving
the following optimization problem by running Ksgd steps of
stochastic gradient descent:

ŵ(t) ≈ argmin
w
Eν

(t)

(b, θ(t), w),

recall that Eν
(t)
(�, θ(t), w) is the transferred function approxi-

mation error defined in Assumption 10. The precise definition
of sample-based NPG can be found in Appendix F, available
online in our supplementary material.

As for policy evaluation, we choose to use a Monte-Carlo
estimator with a fixed horizon H . The idea is very simple, in
each episode we run the target policy π for H steps, and record
the return

Gi =

H−1∑
k=0

γkcy(sk, ak).

The procedure is repeated for Keval times and we take the
average as an estimate of V π

(t)

cy
(μ). Compared with the more

commonly used unbiased Monte-Carlo estimate

G̃i =

H ′−1∑
k=0

cy(sk, ak)

where H ′ is no longer fixed and drawn from an exponential
distribution Exp(λ), Gi does introduce bias, but it also has
the advantage of being sub-Gaussian. Moreover, the bias term
is always bounded by γH

1−γ , which decays exponentially as we
choose larger Hs.

2) Iteration Complexity of SI-CPO: The following two the-
orems give the iteration complexity of the SI-CPO algorithm
when we use either random search or projected subgradient
ascent to solve the inner-loop problem.

Theorem 7: Suppose we use random search to solve the inner-
loop problem and Assumption 3 holds. If we set

α = 1/
√
T ,

η = ε+
1

(1− γ)3/2

√∥∥∥∥ν∗ν0
∥∥∥∥
∞
εbias,

Ksgd = Õ

(
1

ε2bias(1− γ)4
)
,

Keval = Õ

(
1

ε2(1− γ)2
)
,
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H = O

(
log(1− γ) + min{log(εbias), log(ε)}

log γ

)
,

M = Õ

(
(diam(Y ))m

εm(1− γ)m
)
,

and T = Õ( 1
ε2(1−γ)2 ), then we have with probability 1− 2δ,

1

|B|
∑
t∈B

(V ∗r (μ)−V (t)
r (μ)) ≤ ε+ 1

(1−γ)3/2

√∥∥∥∥ν∗ν0
∥∥∥∥
∞
εbias,

and ∀t ∈ B

sup
y∈Y

[
V (t)
cy

(μ)− uy
]
≤ 2ε+

1

(1−γ)3/2

√∥∥∥∥ν∗ν0
∥∥∥∥
∞
εbias.

for any ε < 2ε0Ly/(1− γ).
Theorem 8: Suppose we use projected subgradient ascent to

solve the inner-loop problem and Assumption 4 holds. If we set

α = 1/
√
T ,

η = ε+
1

(1− γ)3/2

√∥∥∥∥ν∗ν0
∥∥∥∥
∞
εbias,

Ksgd = Õ

(
1

ε2bias(1− γ)4
)
,

Keval = Õ

(
1

ε2(1− γ)2
)
,

H = O

(
log(1− γ) + min{log(εbias), log(ε)}

log γ

)
,

TPGA = O

(
[diam(Y )]2

ε2(1− γ)2
)
,

and T = Õ( 1
ε2(1−γ)2 ), then we have with probability 1− δ,

1

|B|
∑
t∈B

(V ∗r (μ)− V (t)
r (μ)) ≤ ε+ 1

(1−γ)3/2

√∥∥∥∥ν∗ν0
∥∥∥∥
∞
εbias,

and ∀t ∈ B

sup
y∈Y

[
V (t)
cy

(μ)− uy
]
≤ 2ε+

1

(1−γ)3/2

√∥∥∥∥ν∗ν0
∥∥∥∥
∞
εbias.

One may refer to Appendix C, available online in our supple-
mentary material for the detailed proof. In our proof, we focus on
the event that the policy evaluation subroutine returns accurate
estimates of V (t)

cy (μ) and the sample-based NPG generates a

near-optimal solution of minw E
ν(t)

(�, θ(t), w). We show that
this event happens with high probability. When it happens,
with carefully chosen tolerance threshold η, either the “good
set” B is large or the policies in B perform as well as the
optimal policyπ∗ on average, i.e.

∑
t∈B(V

(t)
r (μ)− V ∗r (μ)) ≥ 0.

As long as B is large enough, we may further conclude that
1
|B|
∑
t∈B |V (t)

r (μ)− V ∗r (μ)| is small by typical analysis tech-
niques of NPG [4]. Recalling that the constraint violations of
policies in B are small as long as the inner-loop optimization
problems are effectively solved, we complete our proof.

Our ideas of proof are similar to [65], [66]. However, [65]
focused on the semi-infinitely constrained convex problems
and we focus on the semi-infinitely constrained RL problems.
Moreover, their theoretical results are in the form of bounds
on expectations, while ours are in the form of high probability
bounds. Our work is different from [66] in the sense that they ad-
dress finitely constrained RL problems where the sub-problem of
cut generation can be exactly solved and we address semi-infinite
RL problems where the sub-problem of cut generation can only
be approximately solved. Also, [66] restrict their analysis to two
specific forms of policy parametrizations, whereas we consider
general policy parametrizations.

Remark 5: The error terms of SI-CPO can be attributed to
three sources: the function approximation error, the statistical
error, and the optimization error. When we say SI-CPO con-
verges to the globally optimal policy π∗ at a Õ(1/

√
T ) rate, we

mean that if we use a near-perfect parameterized policy class,
estimate V (t)

cy (μ) and the natural policy gradient with adequate
data, and solve the inner-loop problem with sufficient accuracy,
then the averaged error term of SI-CPO has a Õ(1/

√
T ) order

with high probability.
Remark 6: When solving the inner-loop problem, an alter-

native approach to random search is to search over a fixed grid
of Y . This is equivalent to a version of naive discretization:
we first transform the SICMDP to a finitely constrained MDP
by discretizing Y , and then solve the resulting problem with
CRPO [66]. From a theoretical viewpoint, random search is
no better than the grid search since both need to search over a
Õ((diam(Y )/ε)m)-sized grid to ensure ε-optimality. However,
in numerical experiments we find that the approach based on
random search is far more efficient than the approach based on
grid search. The reasons can be two-fold: 1) in the theoretical
analysis we must give guarantees for the hardest problem in-
stances, but real-world problem settings may contain structures
that can be exploited by random search [10]; 2) in random search,
the random grids are generated in an independent way in each
iteration, which can reduce the bias introduced by replacing the
constraint set Y with a fixed finite grid.

3) Sample Complexity of SI-CPO: Corollary 1: SI-CPO
needs to perform Õ( 1

ε2 min{ε2,ε2bias}(1−γ)6
) interactions with the

environment to ensure with high probability

1

|B|
∑
t∈B

(V ∗r (μ)− V (t)
r (μ)) ≤ ε+ 1

(1− γ)3/2

√∥∥∥∥ν∗ν0
∥∥∥∥
∞
εbias,

and ∀t ∈ B

sup
y∈Y

[
V (t)
cy

(μ)− uy
]
≤ 2ε+

1

(1− γ)3/2

√∥∥∥∥ν∗ν0
∥∥∥∥
∞
εbias.

Proof: This corollary is a direct consequence of Theorem 7 as
the sample complexity is of the order T ·H · (Keval +Ksgd).
Note that the sample complexity bound is independent of how
we solve the inner-loop problem. �

Our sample complexity bound is of the order Õ( 1
ε4(1−γ)6 ).

This is better than typical sample complexity bounds for sample-
based NPG such as the Õ( 1

ε4(1−γ)10 ) in [4]. The difference
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comes from that when optimizing Ev
(t)
(�, θ(t), w), the noise

of our gradient estimate has a sub-gaussian tail due to the
use of a biased finite-horizon Monte-Carlo estimator for policy
evaluation. Therefore, in our algorithm, we need to run fewer
SGD iterations (corresponding to smaller Ksgd) to find a good
estimate of the natural gradient.

VI. NUMERICAL EXPERIMENTS

We design two numerical examples: discharge of sewage and
ship route planning. Through a set of numerical experiments,
we illustrate the SICMDP model and validate the efficacy of our
proposed algorithms. In particular, we find that the SICMDP
framework greatly outperforms the CMDP baseline obtained by
naively discretizing the original problem in modeling problems
like Examples 1, 2. We highlight that in the example of ship
route planning the SI-CPO algorithm is can efficiently solving
complex reinforcement learning tasks using modern deep rein-
forcement learning approaches.

A. Discharge of Sewage

We consider a tabular sequential decision-making problem
called discharge of sewage that is adapted from the literature
of environmental science [24]. Assume there are |S| sewage
outfalls in a region [0, 1]2, and at each time point only one
single outfall is active. The active outfall would cause pollution
in nearby areas, and the impact would decrease with euclidean
distance. Hence our state is the current active outfall. Given the
current active outfall, the available actions are to switch to one
of |A| neighboring outfalls or do nothing. Each switch would
receive a negative reward representing the switching cost. We
need to figure out a switching policy to avoid over-pollution at
each location of the region while minimizing the switching cost.
Clearly, this problem can be formulated as a SICMDP model
with Y = [0, 1]2 and corresponding cy and uy . Specifically, we
use cy(s, a) = cy(s) = 1/(1 + ‖y − s‖22), where s represents
the position of the state (outfall). Given a target state-occupancy
measuredwe defineuy = (1 +Δ)

∑
s∈S d(s)cy(s), whereΔ is

a small positive number. The SICMDP would be nontrivial if we
choose a suitableΔ. In the following numerical experiments, we
assume that an offline dataset generated by a generative model
is available.

First, we compare our SI-CMBRL algorithm with a naive
discretization baseline 1. In the baseline method, we only con-
sider the constraints on a grid of Y containing Nbaseline points,
which allows us to model Discharge of Sewage as a standard
CMDP problem with Nbaseline constraints. The CMDP problem
is then solved by the algorithm proposed in [20]. Details of our
implementation can be found in Appendix E, available online in
our supplementary material. We visualize the quality of solutions
of our proposed method and baseline method in Fig. 3. It can
be found that when T = Nbaseline, the policy obtained by our
proposed methods is of far better quality than the policy obtained
by the baseline methods.

A counter-intuitive phenomenon is that although in our
method we need to deal with multiple LP problems and

Fig. 1. (Discharge of Sewage) The icons represent locations of the sewage
outfalls. The satellite image is from NASA and only for illustrative purpose.

Fig. 2. (Ship Route Planning) The island represents the ecological critical
point. The green dashed line represents a feasible route, while the red dash-dot-
dot line represents a more efficient but ecologically infeasible route. The satellite
image is from NASA and only for illustrative purpose.

Fig. 3. (Discharge of Sewage) Visualization of violation of constraints us-
ing SI-CMBRL (left) and baseline (right). The heat refers to the number
log((V π̂

cy (μ)− uy)+ + 5× 10−6)− log(5× 10−6). Larger numbers mean
a more serious violation of constraints. The red cross icons in the left two sub-
figures represent the T = Nbaseline = 9 checkpoints selected by the algorithms.

in the baseline we only solve one single LP problem, our
method is still more time-efficient than the CMDP baseline.
Fig. 5 indicates that our method takes less time to get a so-
lution of given accuracy, which is evaluated by the error term
max{V π∗r (μ)− V π̂r (μ), supy∈Y V π̂cy (μ)− uy}. The reason is
that in SI-CMBRL we can solve LP problems with a dual simplex
method, thus re-optimization after adding a new constraint is
much faster than re-solving the LP problem from scratch [31].
And our method needs far fewer active constraints to attain the
same accuracy as the baseline methods, see Fig. 4.

We also compare our SI-CPO algorithm with the pre-
mentioned discretization baseline. In this numerical experiment,
we use softmax policy parametrization. Our SI-CPO algorithm
is instantiated with sample-based NPG as the policy optimiza-
tion subroutine, a finite-horizon Monte-Carlo estimator as the
policy evaluation subroutine, and random search with a grid
of 100 points as the optimization subroutine. Here the size of
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Fig. 4. (Discharge of Sewage) Averaged error term of our proposed method
and the baseline method over 100 seeds whenT andNbaseline vary. (δ = 0.005

|S|2 |A| ,
m sufficiently large).

Fig. 5. (Discharge of Sewage) Averaged time consumption of our method
and the CMDP baseline to get a solution of given accuracy over 100 seeds.
(δ = 0.005

|S|2 |A| , m sufficiently large).

Fig. 6. (Discharge of Sewage) Visualization of violation of constraints using
SI-CPO (left) and the naive discretization baseline with Nbaseline = 500 solved
by CRPO (right). The heat refers to the number 18(V π̂

cy (μ)− uy)+. Larger
numbers mean a more serious violation of constraints.

the random grid in each iteration is 100. For a fairer compar-
ison, here the CMDP resulting from discretizing Y is solved
by CRPO [66]. This is also equivalent to a naive version of
our SI-CPO algorithm where the inner problem is solved by
searching over a fixed grid. (See Remark 6). One may find the
details of the implementation of our methods as well as the
baselines in Appendix E, available online in our supplementary
material.

The visualization of the solutions’ quality can be found in
Fig. 6, which shows that the policy obtained by SI-CPO is better
than the policy obtained by the baseline solved by CRPO. In
Fig. 7 we compare the convergence performance of SI-CPO to
baselines that naively discretize Y into grids with different sizes
(different Nbaselines). The resulting CMDPs are also solved by
CRPO. We may observe that the SI-CPO algorithm achieves a
more rapid convergence measured by the number of iterations

Fig. 7. (Discharge of Sewage) Error term of SI-CPO and baselines versus the
number of iterations. The solid line is the error term averaged over 20 random
seeds. And we also provide the according error bars.

TABLE I
(DISCHARGE OF SEWAGE) TIME CONSUMPTION OF EACH ITERATION IN SI-CPO

AND BASELINES

than all the naive discretization baselines no matter how large
the grid is. Also, Table I suggests that the time consumption of
a single iteration of SI-CPO is comparable to baseline methods.

B. Ship Route Planning

To demonstrate the power of the SICMDP model and our
proposed algorithms, we design a more complex continuous
control problem with continuous state space named ship route
planning. This numerical example tackles a challenging task
in maritime science [62], [63]: planning ship routes while en-
suring their negative environmental impact remains under an
adaptive threshold. Consider a ship sailing in a 2-dimensional
area represented by the unit square [0, 1]2. At each time step
t, the state of the ship is represented by its current position
st ∈ [0, 1]2 and the action it takes is represented by the next
heading angle at ∈ [0, 2π). Given an outset O ∈ [0, 1]2 and a
destinationD ∈ [0, 1]2, at each time step t, we receive a negative
reward r(st) = −0.1× (‖st −D‖2 + 1), and after we arrive at
D we will receive a large positive reward 5. The most efficient
route is apparently a straight line. However, we must take into
account additional environmental concerns. Specifically, the
ship positioned at s would cause pollution cy(s) = e−20‖y−s‖2
to position y. cy is designed to account for the greater pollution
impact on areas closer to the ship. The adaptive threshold
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Fig. 8. (Ship Route Planning) Visualization of routes and violation of con-
straints using SI-CPPO (left) and naive discretization with Nbaseline = 1000
(right). The heat refers to the number5(V π̂

cy (μ)− uy)+. Larger numbers mean a
more serious violation of constraints. The green dashed line represents a feasible
route induced by the SI-CPPO policy, while the red dash-dot line represents an
infeasible route induced by the baseline policy. The blue icons in the center
represent the ecologically critical points.

Fig. 9. (Ship Route Planning) Cumulative reward of SI-CPPO and baselines
versus the number of iterations. The solid line is the cumulative reward averaged
over 20 random seeds. And we also provide the according error bars.

of pollution is defined by uy = 0.015 + 0.005× e20‖y−MPA‖2 ,
where MPA ∈ [0, 1]2 is an environmentally critical point that has
special ecological significance, such as a habitat of endangered
species or a natural heritage priority site. The design of uy
reflects the principle that we implement more strict pollution
restrictions for nearer positions from the environmentally critical
point MPA. We would like to complement that due to the
existence of a terminal state (the ship’s destination), we set the
discount factor γ = 1. Fig. 2 provides a visual explanation of
this numerical example.

We study the performance of an actor-critic version of SI-
CPO called SI-CPPO in this example. In SI-CPPO, the policy
optimization subroutine is PPO, the policy evaluation subrou-
tine is TD-learning and the optimization subroutine is a trust-
region method [15]. Both the policy and the value estimator
are parametrized by deep neural networks. We still consider
the naive discretization baseline where the CMDPs resulting
from discretization are solved by CRPO. The implementation
details of SI-CPPO and the baseline can be found in Appendix
E, available online in the supplementary material. Fig. 8 is a
visualization of the solutions attained via SI-CPPO and the
discretization baseline. While the baseline fails to generate a fea-
sible route, SI-CPPO manages to plan a route that is both feasible
and efficient. We demonstrate the convergence performance of
SI-CPPO and baselines with various Nbaseline in Figs. 9 and 10.
It is shown that the convergence of baselines is very slow and the
curves oscillate a lot. And simply increasing Nbaseline does not

Fig. 10. (Ship Route Planning) Maximum constraint violation of SI-CPPO
and baselines versus the number of iterations. The solid line is the maximum
constraint violation averaged over 20 random seeds. And we also provide the
according error bars.

TABLE II
(SHIP ROUTE PLANNING) TIME CONSUMPTION OF EACH ITERATION IN

SI-CPPO AND BASELINES

help. In contrast, our SI-CPPO algorithm rapidly converges to
the optimal solution. Also, Table II shows that a single iteration
of SI-CPPO consumes a similar amount of time compared with
baseline methods.

VII. CONCLUSION

We have studied a novel generalization of CMDP that we have
called SICMDP. In particular, we have considered a continuum
of constraints rather than a finite number of constraints. We have
devised two reinforcement learning algorithms, SI-CMBRL and
SI-CPO, to solve SICMDP problems. Furthermore, we have
presented a theoretical analysis for our proposed algorithms,
establishing the iteration complexity bounds as well as the
sample complexity bounds. We have also performed extensive
numerical experiments to show the efficacy of our proposed
methods and their advantage over traditional CMDPs.
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